

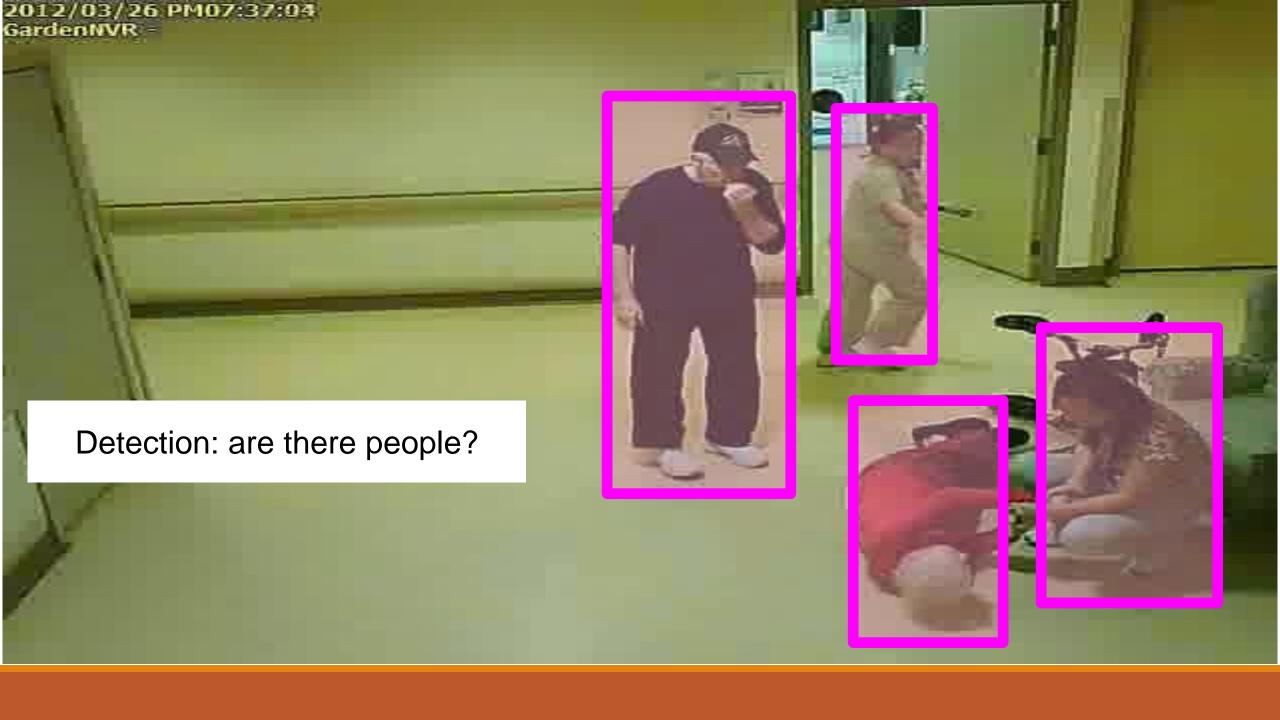
Spatio-temporal attention mechanisms for Activities of Daily Living

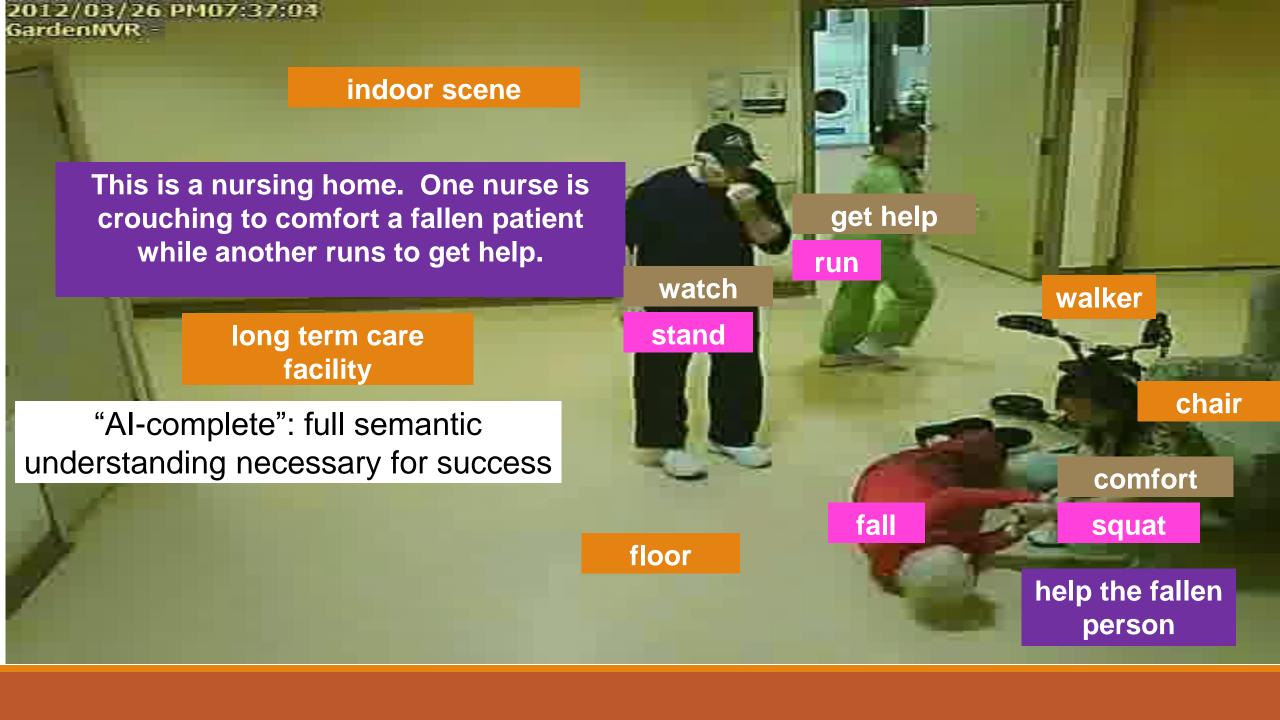
SRIJAN DAS RESEARCH SCHOLAR STARS TEAM, INRIA

Outline

- Introduction
- Related Work
- Contributions
- Experimental Evaluation
- Conclusion

Introduction

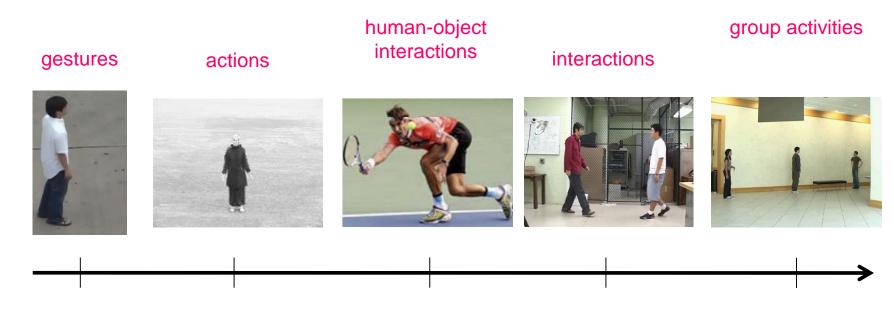




Human Activity Recognition

There are various types/levels of activities

The ultimate goal is to make computers recognize all of them reliably.

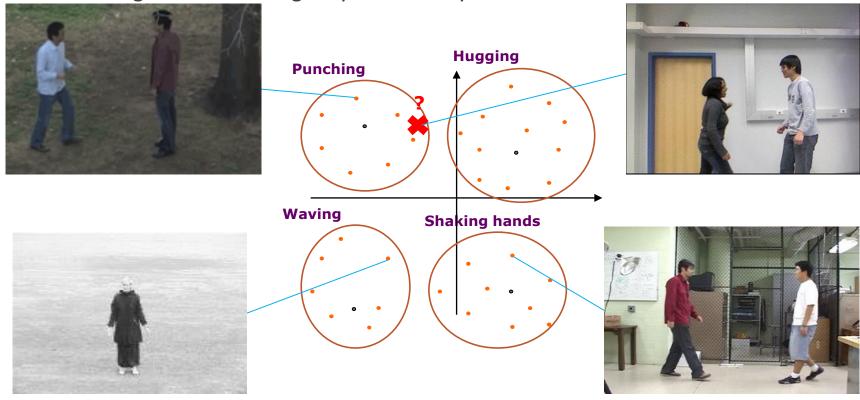


Levels of human activities

Activity Classification

Categorization of segmented videos

• Input = a video segment containing only one activity



Why is activity recognition important?

User videos

~300 hours of videos per minute

 Video indexing and retrieval **Monitoring cameras**

Streaming videos 24/7

- Surveillance
- Patient/elderly monitoring

Media

Content analysis, experience enrichment

- Recommendation systems
- Advertising
- Sports analytics

Wearables/robots

Streaming videos to be analyzed in real-time

- Lifelogging
- Robot operations and actions

Why is activity recognition important?

User videos

~300 hours of videos per minute

 Video indexing and retrieval Monitoring cameras

Streaming videos 24/7

- Surveillance
- Patient/elderly monitoring

Media

SPORTLOG

Content analysis, experience enrichment

- Recommendation systems
- Advertising
- Sports analytics

Wearables/robots

Streaming videos to be analyzed in real-time

- Lifelogging
- Robot operations and actions

Web videos vs Activities of Daily Living (ADL)

WEB VIDEOS

ADL

Challenges in ADL

Drinking Drinking

Same background

High intra-class variation

Challenges in ADL

Typing a keyboard

Reading

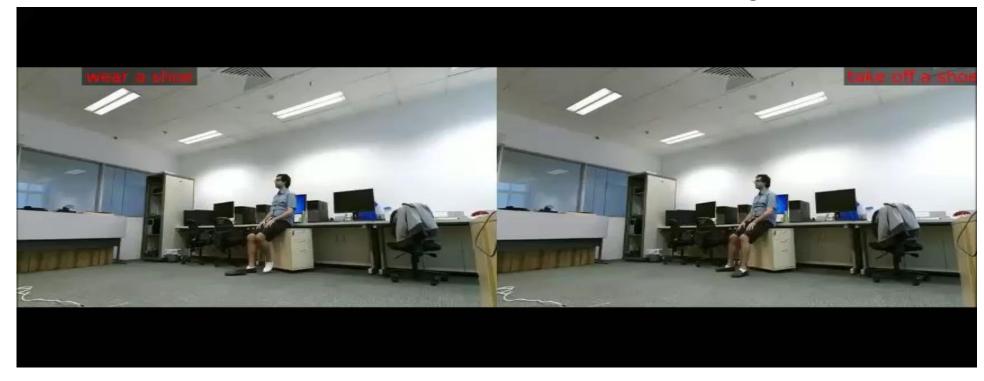
Same background

Actions with subtle motion

Challenges in ADL

Wear a shoe

Taking off a shoe



Same background

• Actions with similar appearance

Objectives

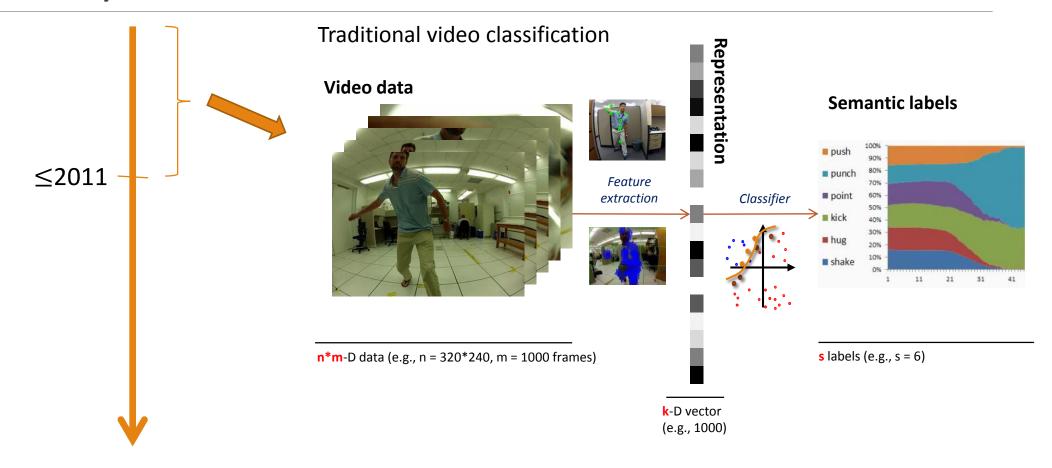
0

Modelling Actions and dealing with the temporal domain.

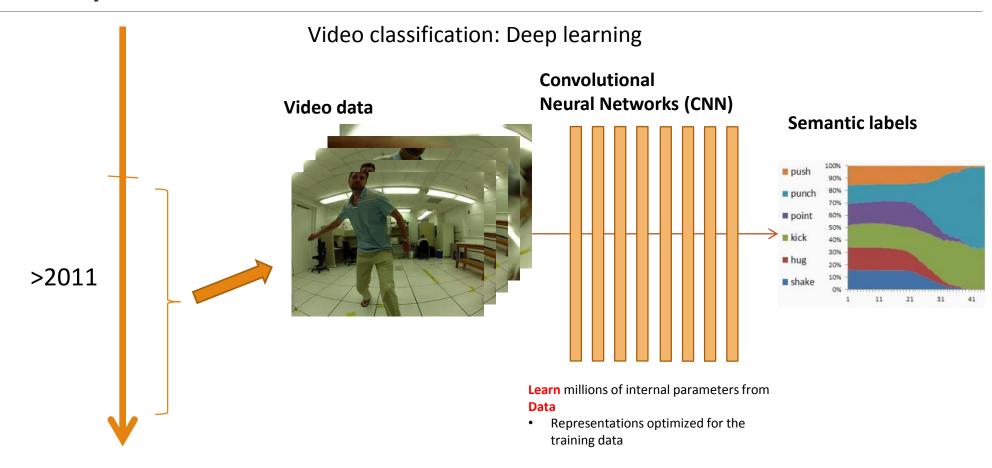
- Focus on Activities of Daily Living (ADL), in particular
 - Fine-grained actions (similar appearance & subtle motion actions, temporally opposite actions)
 - In real-world settings (different camera views, low subject resolution, presence of occlusions)

Related Work

History

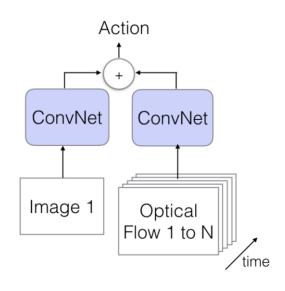


History



Video classification with deep learning

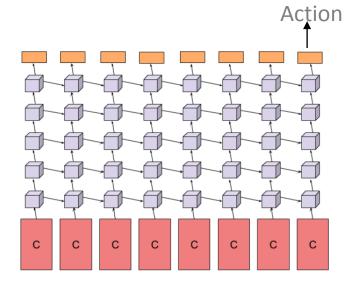
Input: a fixed number of frames, Output: a class label



Two-stream CNNs

 1 frame RGB + 10 frames of optical flow

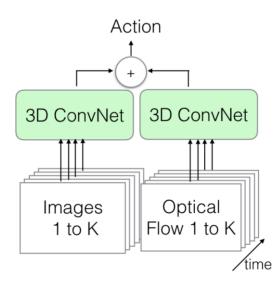
[Carreira and Zisserman, 2017]



Sequential models RNNs

 model 'sequences' of per-frame CNN representations (RGB/3D Poses)

[J. Ng et al., 2015]



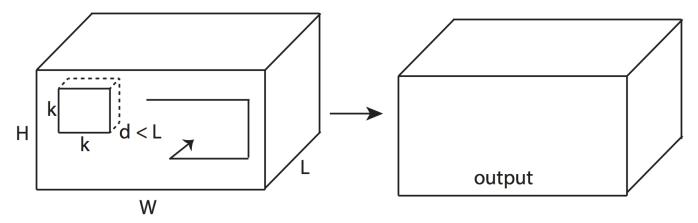
3-D XYT CNNs

- 15~99 frames (RGB + Flow)
- Facebook C3D, Google I3D

Video Classification with 3D CNNs

Facebook C3D [Tran et al., 2015]

Spatio-temporal filters for short video segments (e.g., 15 frames) – coupling space and time

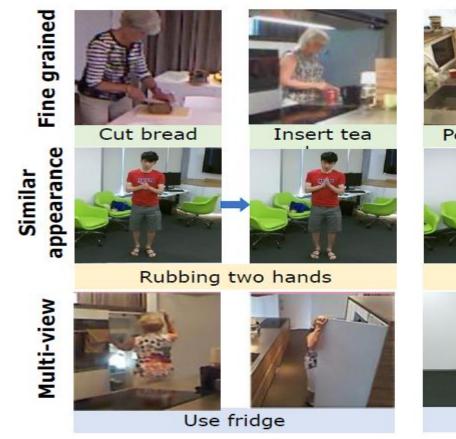


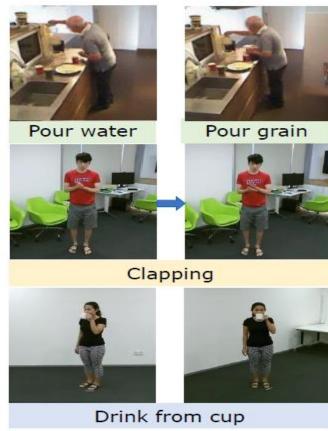
Google I3D [Careirra et al., 2017]

Extended by inflation from Spatial domain

Limitations of 3D CNNs

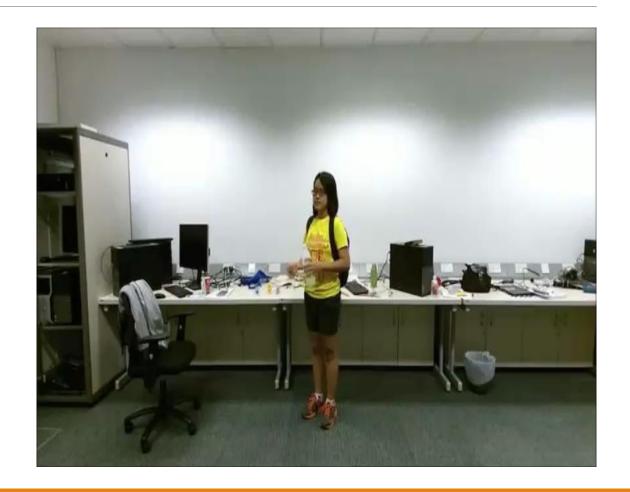
- Rigid spatio-temporal kernels limiting them to capture subtle motion
- No specific operations to help disambiguate similarity in actions.
- 3D (XYT) CNNs are not view-adaptive...





➤ The girl is drinking water from a bottle

➤ Do you really need the whole video to infer that?



➤ Isn't this enough for an inference?

> Can you recognize this action?



Now probably you can answer!!!

> So, temporal relationship is important.

The answer is yes but we need to have an attention mechanism to provide weightage to them!

Attention mechanism

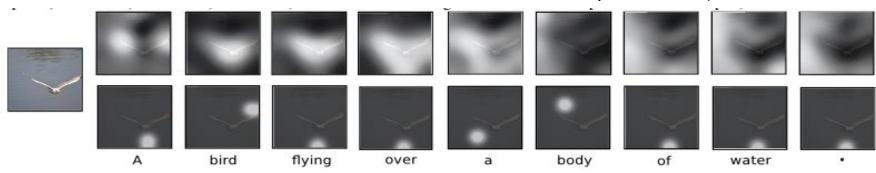
Attention mechanism

Hard attention

- Hard decisions while choosing parts of the input data.
- Cannot be learned easily through gradient decent (no global optimization).

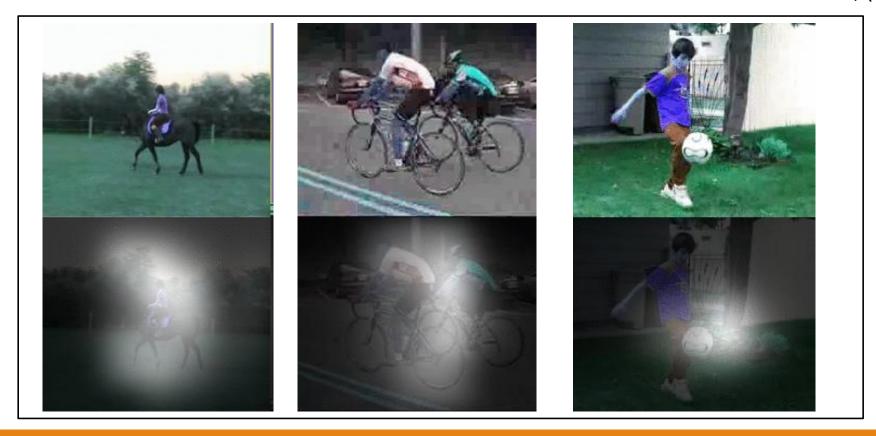
Soft attention

- Weighs the RoI dynamically, taking the entire input into account.
- Can be trained end-to-end (global optimization).

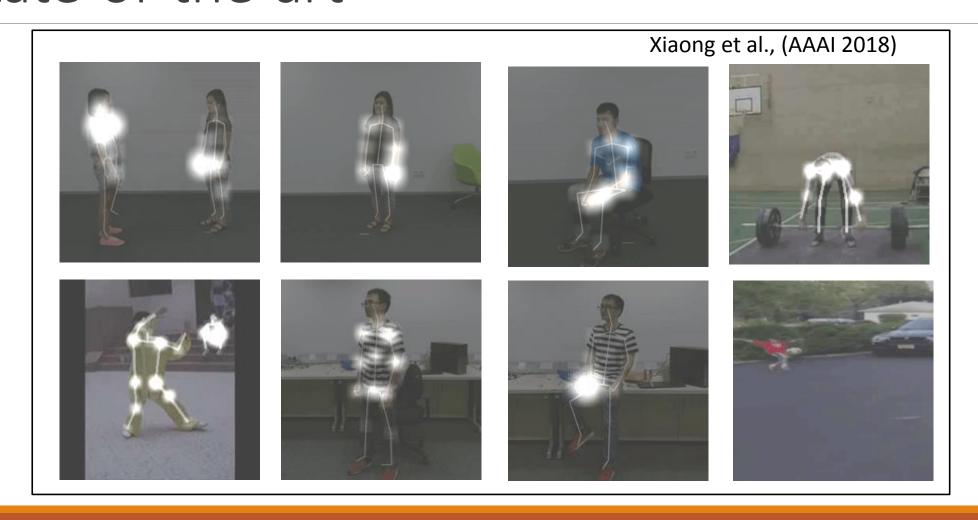


Example videos of soft-attention in the state-of-the-art

Sharma et al., (ICLRW 2015)



Example videos of soft-attention in the state-of-the-art



Disadvantages of the existing attention mechanisms

Existing attention mechanisms are based on RNN classification models.

- Performance is lower due to lack of spatio-temporal coupling.
- Lacks the use of highly informative 3D pose information. These poses are robust to illumination, view and describes the human dynamics.

Contributions

- SPATIAL ATTENTION
- SPATIO-TEMPORAL ATTENTION
- EXTRA LAYER OF TEMPORAL ATTENTION FOR COMPLEX ACTIVITIES

Proposed Attention Mechanism

1. Spatial Attention (WACV 2019)

Objective: To focus on the pertinent human body parts involved in an action **Method** -> 3D ConvNet (RGB input) + RNN (to weight the body parts from the evolution of skeleton sequences).

Input: RGB -> classification Network
3D skeleton -> attention network

2. Spatio-temporal Attention (ICCV 2019)

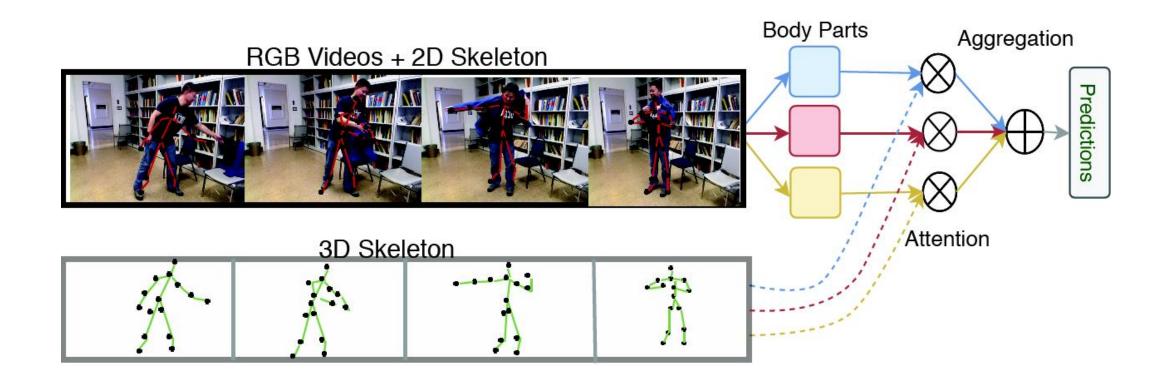
Objective: To incorporate spatial and temporal attention in the same model **Input**: RGB+ 3D skeleton; **Method** -> 3D ConvNet (RGB input) + 1 RNN (to compute spatial attention mask and temporal attention mask separately)

3. Extra layer of Temporal Attention for Complex Activities (WACV 2020)

Objective: To focus on the pertinent temporal segments in a video

Method -> 3D ConvNet (RGB input) + G RNNs + (G+1) RNNs (to weight the temporal segments from the corresponding poses at a granularity G).

Spatial attention model (WACV 2019)



Spatial attention model

An end-to-end Spatial attention network for human action recognition.

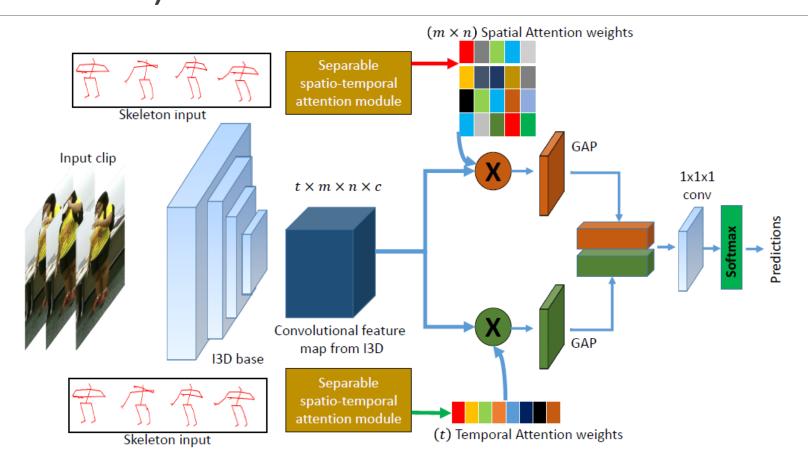
- A method to classify actions from RGB-D videos based on spatio-temporal representation of human body parts.
- A **novel RNN attention model**. The attention model uses articulated poses to compute the importance of human body parts.
- A **joint strategy** to tightly couple 3D ConvNet classification networks and the RNN attention model using a regularized cross-entropy loss.

Demo of Spatial attention model

Raw Video - RGB

Action Label - drinking

Spatio-temporal attention mechanism (ICCV 2019)

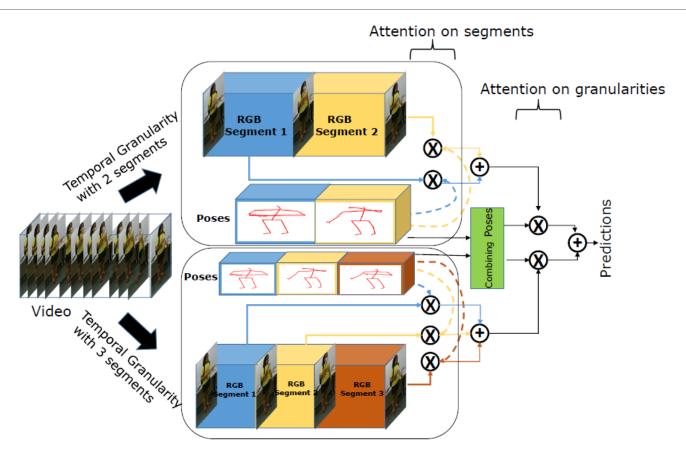


Spatio-temporal attention model

An end-to-end Spatial & temporal attention network for human action recognition.

- A method to classify actions from RGB-D videos based on spatio-temporal representation of video.
- Dissociate spatial and temporal attention mechanism (instead of coupling them) [architecture is based on the study of retinal ganglion cells in the primate visual system]

Extra layer of temporal attention for complex activities in ADL (WACV 2020)



Extra layer of temporal attention for complex activities in ADL

An end-to-end temporal Model for temporally complex human action recognition. This is done by

- splitting a video into several temporal segments at different levels of temporal granularity
- employing a two-level pose driven attention mechanism. First to manage the relative importance of the temporal segments within a video for a given granularity. Second to manage the relative importance of the various temporal granularities.

What is temporal granularity?

A video of person drinking is represented with coarse to fine granularity ($G_{max} = 4$)

What are temporal segments?

The video with temporal granularity G=3 has 3 temporal segments and so on.

Illustration of visual result of attention scores (TS - att & TG - att) on the sample video TS - attTG-attG=260.5 **High** attention score 39.5 76.3% 76.3 G = 367.8 <u>12.4</u> 11.3 22.1 10.1 G=448.5 32.8 16.6 2.1

Experimental Evaluation

Dataset Description

- NTU RGB-D dataset, one of the largest available human activity dataset
 - **□** 58,000 **videos**
 - ☐ 60 actions
 - ☐ 40 subjects
 - 80 views



Dataset Description

 An object-interaction human action recognition dataset: the Northwestern-UCLA Multiview Action 3D Dataset.

Pick up wiith One Hand

Pick up with Two Hands

Drop Trash

Walk Around

Sit Down

- □ 1194 videos
- ☐ 10 actions
- ☐ 10 subjects
- ☐ 3 views

Stand Up

Donning

Doffing

Throw

arry

Comparison with the state-of-the-art

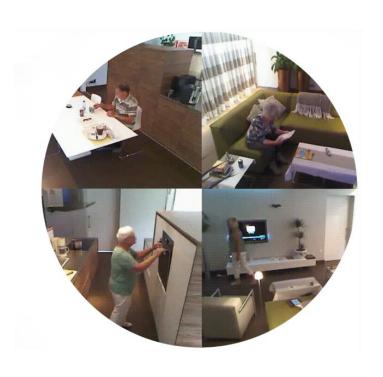
Results on **NTU RGB-D** with cross-subject (CS) and cross-view settings (accuracies in %)

Methods	CS	CV	Avg
VA-LSTM (ICCV 2017)	79.4	87.6	83.5
Glimpse Cloud (CVPR, 2018)	86.6	93.2	89.9
PEM (CVPR, 2018)	91.7	95.2	93.4
Spatial Attention (WACV 2019)	93	95.4	94.2
Spatio-temporal Attention (ICCV 2019)	92.2	94.6	93.4
Temporal Model (P-I3D base) (WACV 2020)	93.9	96.1	95

Results on **N-UCLA** with cross-view settings (accuracies in %)

Methods	$V_{1,2}^{3}$
NKTM (CVPR, 2015)	85.6
Ensemble TS-LSTM (ICCV, 2017)	89.2
Glimpse Cloud (CVPR, 2018)	90.1
HPM+TM (CVPR, 2016)	91.9
Spatial Attention (WACV 2019)	93.1
Spatio-temporal Attention (ICCV 2019)	92.4
Temporal Model (P-I3D base) (WACV 2020)	93.5

Towards Real-world Action Recognition



18 subjects

31 activity classes

16.1k videos

7 camera views

Real-world challenges

- spontaneous acting
- low camera awareness
- high camera framing
- multi-view setting
- composite activities
- activities with different objects

Experimental evaluation on Toyota Smarthome dataset

Results on **Smarthome** with cross-subject (CS) and cross-view settings (accuracies in %)

Methods	CS	CV ₁	CV ₂
DT (CVPR, 2011)	41.9	20.9	23.7
LSTM on 3D joints (CVPR, 2015)	42.5	13.4	17.2
I3D (CVPR, 2017)	53.4	34.9	45.1
I3D+NL (CVPR, 2018)	53.6	34.3	43.9
Spatial Attention (WACV 2019)	-	-	-
Spatio-temporal Attention (ICCV 2019)	54.2	35.2	50.3
Temporal Model (I3D base) (WACV 2020)	59.0	37.4	55.6

Conclusion

Conclusion

- Proposed end-to-end attention models (spatial and temporal) to focus on pertinent Rol and key frames in a video.
- Validation of the proposed methods on publicly available datasets and a real-world dataset outperforming the state-of-the-art results on them.
- Future perspectives include
 - Domain adaptation for video understanding
 - Going towards weakly supervised action recognition

TOYOTA

TOYOTA MOTOR EUROPE

TOYOTA SMARTHOME: REAL WORLD ACTIVITIES OF DAILY LIVING

Groundtruth: Background

Prediction: Background(0.825)

Thank You Questions???